4.5 Article

Mechanics of river mouth bar formation: Implications for the morphodynamics of delta distributary networks

期刊

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2006JF000574

关键词

-

向作者/读者索取更多资源

[1] In this paper, we use observational data and numerical modeling to present a new explanation for the formation of river-dominated delta networks. Observational data from deltas throughout the world show that distributary channel widths, depths, and lengths decrease nonlinearly with successive bifurcations. Trends in width and depth are an outcome of hydraulic geometry scaling. The trend in channel length is a consequence of delta growth. Analyses of serial maps show that the positions of bifurcations are the fossilized locations of river mouth bars ( also called middle-ground and distributary mouth bar) in front of old delta channel mouths. Therefore the trend in channel length can be explained through the mechanics of river mouth bar formation and evolution. We use Delft3D, a coupled hydrodynamic and morphodynamic model, to simulate the process of river mouth bar formation within an expanding turbulent jet in front of distributary channel mouths. Our results describe in detail the formation and evolution of a river mouth bar system and demonstrate that the distance to the river mouth bar is proportional to jet momentum flux and inversely proportional to grain size. Therefore channel length decreases down delta because with each successive bifurcation, the jet momentum flux decreases. These results can be used to predict the future evolution of river-dominated deltas and can be used to aid in hydrocarbon exploration of these depositional environments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据