4.7 Article

NKCC1 phosphorylation stimulates neurite growth of injured adult sensory neurons

期刊

JOURNAL OF NEUROSCIENCE
卷 27, 期 25, 页码 6751-6759

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.1337-07.2007

关键词

NKCC1; phosphorylation; regenerative growth; injury; chloride homeostasis; DRG

资金

  1. NINDS NIH HHS [NS36758, R01 NS036758] Funding Source: Medline

向作者/读者索取更多资源

Peripheral nerve section promotes regenerative, elongated neuritic growth of adult sensory neurons. Although the role of chloride homeostasis, through the regulation of ionotropic GABA receptors, in the growth status of immature neurons in the CNS begins to emerge, nothing is known of its role in the regenerative growth of injured adult neurons. To analyze the intracellular Cl- variation after a sciatic nerve section in vivo, gramicidin perforated- patch recordings were used to study muscimol- induced currents in mice dorsal root ganglion neurons isolated from control and axotomized neurons. We show that the reversal potential of muscimol- induced current, EGABA-A, was shifted toward depolarized potentials in axotomized neurons. This was attributable to Cl- influx because removal of extracellular Cl- prevented this shift. Application of bumetanide, an inhibitor of NKCC1 cotransporter and EGABA-A recordings in sensory neurons from NKCC1(-/-) mice, identified NKCC1 as being responsible for the increase in intracellular Cl- in axotomized neurons. In addition, we demonstrate with a phospho- NKCC1 antibody that nerve injury induces an increase in the phosphorylated form of NKCC1 in dorsal root ganglia that could account for intracellular Cl- accumulation. Time- lapse recordings of the neuritic growth of axotomized neurons show a faster growth velocity compared with control. Bumetanide, the intrathecal injection of NKCC1 small interfering RNA, and the use of NKCC1(-/-) mice demonstrated that NKCC1 is involved in determining the velocity of elongated growth of axotomized neurons. Our results clearly show that NKCC1-induced increase in intracellular chloride concentration is a major event accompanying peripheral nerve regeneration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据