4.8 Article

Mapping Electroactivity at Individual Catalytic Nanostructures Using High-Resolution Scanning Electrochemical Scanning Ion Conductance Microcopy

期刊

ANALYTICAL CHEMISTRY
卷 86, 期 24, 页码 12100-12107

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac502946q

关键词

-

资金

  1. UK National Measurement System, part of the Department for Business, Innovation and Skills

向作者/读者索取更多资源

Combined scanning electrochemical-scanning ion conductance microcopy (SECM-SICM) has been used to map the electroactivity of surfaces decorated with individual features at the 100-150 nm scale. Dual channel capillary probes consisting of an open SICM barrel, and a solid carbon SECM electrode enabled correlation of surface activity with accurate topographical information. Measurements were validated by approach curve analysis and imaging of model systems in feedback and substrate generation-tip collection modes and then applied to the examination of two nanostructured test substrates. First, electronically isolated gold nanodisk arrays were imaged using a simple electrochemical redox mediator, in which a clear positive feedback signal was observed at the SECM electrode, and the topographical channel compared well with AFM imaging. Second, platinum nanosphere ensembles were mapped using platinum-modified carbon probes to detect oxygen consumption in a redox competition mode, demonstrating the means to study electrocatalytic processes at individual nanoparticles. This work demonstrates the value of high-resolution SECM-SICM for low-current amperometric imaging of nanosystems, and is a step toward quantitative measurement of electrokinetics at the single particle level.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据