4.7 Article

Adsorbed states and scanning tunneling microscopy induced migration of acetylene on Cu(110)

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 126, 期 23, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2741512

关键词

-

向作者/读者索取更多资源

The authors have studied adsorption of acetylene on Cu(110) by means of low-temperature scanning tunneling microscopy. Adsorbed molecules preferentially aggregate at 40 K to yield dimer, trimer, and larger islands on the surface. Isolated species (monomer) adsorbs on the fourfold hollow site with similar to sp(3) rehybridization as characterized by inelastic electron tunneling spectroscopy. Tunneling electron induces an acetylene molecule to migrate along the trough of Cu(110). The migration proceeds in two steps: the molecule first hops to the adjacent long-bridge site and then to the next fourfold site. The voltage and current dependencies of the hopping probability show that the migration is induced by inelastic electron tunneling that causes vibrational excitation of mainly C-H stretch mode. (c) 2007 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据