4.8 Article

Allele-specific suppression of a defective brassinosteroid receptor reveals a physiological role of UGGT in ER quality control

期刊

MOLECULAR CELL
卷 26, 期 6, 页码 821-830

出版社

CELL PRESS
DOI: 10.1016/j.molcel.2007.05.015

关键词

-

资金

  1. NIGMS NIH HHS [R01 GM060519-07, R01 GM060519, GM060519] Funding Source: Medline

向作者/读者索取更多资源

UDP-glucose:glycoprotein glucosyltransferase (UGGT) is a presumed folding sensor of protein quality control in the endoplasmic reticulum (ER). Previous biochemical studies with non-physiological substrates revealed that UGGT can glucosylate nonnative glycoproteins by recognizing subtle folding defects; however, its physiological function remains undefined. Here, we show that mutations in the Arabidopsis EBS1 gene suppressed the growth defects of a brassinosteroid (BR) receptor mutant, bri1-9, in an allele-specific manner by restoring its 1313 sensitivity. Using a map-based cloning strategy, we discovered that EBS1 encodes the Arabidopsis homolog of UGGT. We demonstrated that bri1-9 is retained in the ER through interactions with several ER chaperones and that ebs1 mutations significantly reduce the stringency of the retention-based ER quality control, allowing export of the structurally imperfect yet biochemically competent bri1-9 to the cell surface for BR perception. Thus, our discovery provides genetic support for a physiological role of UGGT in high-fidelity ER quality control.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据