4.6 Article

Receptor activity-modifying proteins 2 and 3 have distinct physiological functions from embryogenesis to old age

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 282, 期 25, 页码 18094-18099

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M703544200

关键词

-

资金

  1. NHLBI NIH HHS [R01 HL049277-16, R01 HL049277-15, R01 HL049277-14, R01 HL049277, HL49277] Funding Source: Medline
  2. NICHD NIH HHS [HD046970] Funding Source: Medline

向作者/读者索取更多资源

RAMPs (receptor activity modifying proteins) impart remarkable effects on G protein-coupled receptor (GPCR) signaling. First identified through an interaction with the calcitonin receptor-like receptor (CLR), these single transmembrane proteins are now known to modulate the in vitro ligand binding affinity, trafficking, and second messenger pathways of numerous GPCRs. Consequently, the receptor-RAMP interface represents an attractive pharmacological target for the treatment of disease. Although the three known mammalian RAMPs differ in their sequences and tissue expression, results from in vitro biochemical and pharmacological studies suggest that they have overlapping effects on the GPCRs with which they interact. Therefore, to determine whether RAMP2 and RAMP3 have distinct functions in vivo, we generated mice with targeted deletions of either the RAMP2 or RAMP3 gene. Strikingly, we found that, although RAMP2 is required for survival, mice that lack RAMP3 appear normal until old age, at which point they have decreased weight. In addition, mice with reduced expression of RAMP2 (but not RAMP3) display remarkable subfertility. Thus, each gene has functions in vivo that cannot be accomplished by the other. Because RAMP2, RAMP3, and CLR transduce the signaling of the two potent vasodilators adrenomedullin and calcitonin gene-related peptide, we tested the effects of our genetic modifications on blood pressure, and no effects were detected. Nevertheless, our studies reveal that RAMP2 and RAMP3 have distinct physiological functions throughout embryogenesis, adulthood, and old age, and the mice we have generated provide novel genetic tools to further explore the utility of the receptor-RAMP interface as a pharmacological target.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据