4.8 Article

Nanofiltration membranes based on rigid star amphiphiles

期刊

CHEMISTRY OF MATERIALS
卷 19, 期 13, 页码 3194-3204

出版社

AMER CHEMICAL SOC
DOI: 10.1021/cm070200a

关键词

-

向作者/读者索取更多资源

Rigid star amphiphiles (RSAs) of nanoscale dimension were synthesized and used to fabricate a new generation of nanofiltration (NF) membranes. NF membranes were prepared by direct percolation of methanol solutions of the RSAs through an asymmetric polyethersulfone (PES) support film that had been previously conditioned with methanol and cross-linked polyvinyl alcohol (PES-MeOH-PVA support). The resulting RSA membranes (RSAMs) have been shown to exhibit significantly enhanced water permeability while maintaining high rejection of water contaminants compared to commercial NF membranes. The RSAMs were characterized with the goal of elucidating the structural changes brought about by deposition of RSA. Characterization techniques used included attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectrometry, field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), confocal microscopy, Rutherford backscattering spectrometry (RBS), and gas adsorption/desorption analyses. Results suggest that the RSAs produce a uniform, ultrathin active layer atop the PES-MeOH-PVA support after lining its nanopores with sizes similar to those of the RSAs. Such active layer constitution was found crucial for rejecting organic contaminants and achieving high water flux. These findings encourage further exploration of NF membrane preparation by molecular deposition as an attractive approach for constructing ultrathin membrane active layers to remove challenging contaminants with high water permeability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据