4.8 Article

Targetable Fluorescent Probe for Monitoring Exogenous and Endogenous NO in Mitochondria of Living Cells

期刊

ANALYTICAL CHEMISTRY
卷 85, 期 15, 页码 7076-7084

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac401916z

关键词

-

资金

  1. National Natural Science Foundation of China [21174022]
  2. National Basic Research Program of China [2013CB733702]
  3. Specialized Research Fund for the Doctoral Program of Higher Education [20110041110009]

向作者/读者索取更多资源

Nitric oxide (NO) is a ubiquitous cellular messenger molecule in the cardiovascular, nervous, and immune systems. Mitochondrion is the main area where endogenous NO is synthesized by inducible NOS enzymes in mammalian cells. Thus, real-time monitoring NO in mitochondria is very meaningful for NO chemical biology. Although a variety of fluorescent probes for NO have been successfully developed, they are not suited for detecting mitochondrial NO because none of them can specifically localize in mitochondria. Herein, Mito-Rh-NO, the first mitochondria-targetable turn-on fluorescent probe for NO, has been developed through attaching a triphenylphosphonium to a rhodamine spirolactam. The characteristics of this probe are as following: (1) Mito-Rh-NO exhibits high sensitivity toward NO. In solution, Mito-Rh-NO responds to NO by significant fluorescence enhancement up to 60-fold, and its NO detection limit is as low as 4.0 nM. (2) The NO sensing of Mito-Rh-NO is highly selective, which will not interfere with the other reactive oxygen and nitrogen species. (3) Mito-Rh-NO has a low cytotoxic effect: after being treated with 10 mu M Mito-Rh-NO for 24 h, the survival rate is higher than 90%. (4) Mito-Rh-NO specifically localizing in mitochondria: colocalization experiment of Mito-Rh-NO and Rh 123, a typical mitotracker, shows the merged fluorescent microcopy image with a high Pearson's colocalization coefficient 0.92 and overlap coefficient 0.99. (5) Mito-Rh-NO demonstrates high applicability for real-time monitoring of mitochondrial NO in live cells. Both the exogenous NO released by the donor NOC13 and endogenous NO generated in cells under stimulation have been visualized under confocal microscopy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据