4.7 Review

Zero-variance zero-bias quantum Monte Carlo estimators of the spherically and system-averaged pair density

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 126, 期 24, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2746029

关键词

-

向作者/读者索取更多资源

We construct improved quantum Monte Carlo estimators for the spherically and system-averaged electron pair density (i.e., the probability density of finding two electrons separated by a relative distance u), also known as the spherically averaged electron position intracule density I(u), using the general zero-variance zero-bias principle for observables, introduced by Assaraf and Caffarel. The calculation of I(u) is made vastly more efficient by replacing the average of the local delta-function operator by the average of a smooth nonlocal operator that has several orders of magnitude smaller variance. These new estimators also reduce the systematic error (or bias) of the intracule density due to the approximate trial wave function. Used in combination with the optimization of an increasing number of parameters in trial Jastrow-Slater wave functions, they allow one to obtain well converged correlated intracule densities for atoms and molecules. These ideas can be applied to calculating any pair-correlation function in classical or quantum Monte Carlo calculations. (c) 2007 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据