4.8 Article

Magnetite Nanoparticle-Induced Fluorescence Quenching of Adenosine Triphosphate-BODIPY Conjugates: Application to Adenosine Triphosphate and Pyrophosphate Sensing

期刊

ANALYTICAL CHEMISTRY
卷 85, 期 18, 页码 8559-8565

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac400919j

关键词

-

资金

  1. National Science Council [NSC 100-2628-M-110-001-MY 4]

向作者/读者索取更多资源

We report that magnetite nanoparticles (Fe3O4 NPs) act as an efficient quencher for boron dipyrromethene-conjugated adenosine 5'-triphosphate (BODIPY-ATP) that is highly fluorescent in bulk solution. BODIPY-ATP molecules attached to the surface of Fe3O4 NPs through the coordination between the triphosphate group of BODIPY-ATP and Fe3+/Fe2+ on the NP surface. The formed complexes induced an apparent reduction in the BODIPY-ATP fluorescence resulting from an oxidative-photoinduced electron transfer (PET) from the BODIPY-ATP excited state to an unfilled d shell of Fe3+/Fe2+ on the NP surface. A comparison of the Stern-Volmer quenching constant between Fe3+ and Fe2+ suggests that Fe3+ on the NP surface dominantly controls this quenching process. The efficiency for Fe3O4 NP induced fluorescence quenching of the BODIPY-ATP was enhanced by increasing the concentration of Fe3O4 NPs and lowering the pH of the solution to below 6.0. We found that pyrophosphate and ATP compete with BODIPY-ATP for binding to Fe3O4 NPs. Thus, we amplified BODIPY-ATP fluorescence in the presence of increasing the pyrophosphate and ATP concentration; the detection limits at a signal-to-noise ratio of 3 for pyrophosphate and ATP were determined to be 7 and 30 nM, respectively. The Fe3O4 NP-based competitive binding assay detected ATP and pyrophosphate in only 5 min. The selectivity of this assay for ATP over metal ions, amino acids, and adenosine analogues is particularly high. The practicality of using the developed method to determine ATP in a single drop of blood is also validated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据