4.6 Article

Cluster state preparation using gates operating at arbitrary success probabilities

期刊

NEW JOURNAL OF PHYSICS
卷 9, 期 -, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1367-2630/9/6/200

关键词

-

向作者/读者索取更多资源

Several physical architectures allow for measurement-based quantum computing using sequential preparation of cluster states by means of probabilistic quantum gates. In such an approach, the order in which partial resources are combined to form the final cluster state turns out to be crucially important. We determine the influence of this classical decision process on the expected size of the final cluster. Extending earlier work, we consider different quantum gates operating at various probabilites of success. For finite resources, we employ a computer algebra system to obtain the provably optimal classical control strategy and derive symbolic results for the expected final size of the cluster. We identify two regimes: when the success probability of the elementary gates is high, the influence of the classical control strategy is found to be negligible. In that case, other figures of merit become more relevant. In contrast, for small probabilities of success, the choice of an appropriate strategy is crucial.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据