4.8 Article

Mechanisms of DNA Sensing on Graphene Oxide

期刊

ANALYTICAL CHEMISTRY
卷 85, 期 16, 页码 7987-7993

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac401845p

关键词

-

资金

  1. University of Waterloo
  2. Canadian Foundation for Innovation
  3. NSERC of Canada
  4. Ontario Ministry of Research and Innovation

向作者/读者索取更多资源

Adsorption of a fluorophore-labeled DNA probe by graphene oxide (GO) produces a sensor that gives fluorescence enhancement in the presence of its complementary DNA (cDNA). While many important analytical applications have been demonstrated, it remains unclear how DNA hybridization takes place in the presence of GO, hindering further rational improvement of sensor design. For the first time, we report a set of experimental evidence to reveal a new mechanism involving nonspecific probe displacement followed by hybridization in the solution phase. In addition, we show quantitatively that only a small portion of the added cDNA molecules undergo hybridization while most are adsorbed by GO to play the displacement role. Therefore, it is possible to improve signaling by raising the hybridization efficiency. A key innovation herein is using probes and cDNA with a significant difference in their adsorption energy by GO. This study offers important mechanistic insights into the GO/DNA system. At the same time, it provides simple experimental methods to study the biomolecular reaction dynamics and mechanism on a surface, which may be applied for many other biosensor systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据