4.8 Article

Development of an Atmospheric Pressure Ion Mobility Spectrometer-Mass Spectrometer with an Orthogonal Acceleration Electrostatic Sector TOF Mass Analyzer

期刊

ANALYTICAL CHEMISTRY
卷 85, 期 19, 页码 9003-9012

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac401191k

关键词

-

资金

  1. International Science and Technology Center [3623]
  2. Moscow Department for Support and Development of Small Business [123/08-VP]
  3. Department of Science and Industrial Policy of Moscow [8/3-14n-10]
  4. Federal Program Scientific and Scientific-Pedagogical Personnel of Innovative Russia [14.740.11.0342, 14.740.11.0721, 14.740.11.0540]

向作者/读者索取更多资源

Recently developed ion mobility mass spectrometer is described. The instrument is based on a drift tube ion mobility spectrometer and an orthogonal acceleration electrostatic sector time-of-flight mass analyzer. Data collection is performed using a specially developed fast ADC-based recorder that allows real-time data integration in an interval between 3 and 100 s. Primary tests were done with positive ion electrospray. The tests have shown obtaining 100 ion mobility resolving power and 2000 mass resolving power. Obtained for 2,6-di-tert-butylpyridine in electrosprayed liquid samples during 100 s analysis and full IMS/MS data collection mode were 4 nM relative limits of detection and a 1 pg absolute limit of detection (S/N=3). Characteristic ion mobility/mass distributions were recorded for selected antibiotics, including amoxicillin, ampicillin, lomefloxacin, and ofloxacin. At studied conditions, lomefloxacin forms only a protonated molecule-producing reduced ion mobility peak at 1.082 cm(2)/(V s). Both amoxicillin and ampicillin produce [M + H](+), [M + CH3OH + H](+), and [M + CH3CN + H](+). Amoxicillin shows two peaks at 0.909 cm(2)/(V s) and 0.905 cm(2)/(V s). Ampicillin shows one peak at 0.945 cm(2)/(V s). Intensity of protonated methanol containing cluster for both ampicillin and amoxicillin has a clear tendency to rise with sample keeping time. Ofloxacin produces two peaks in the ion mobility distribution. A lower ion mobility peak at 1.051 cm(2)/(V s) is shown to be formed by [M + H](+) ions. A higher ion mobility peak appearing for samples kept more than 48 h is shown to be formed by both [M + H](+) ion and a component identified as the [M + 2H + M](+2) cluster. The cluster probably partly dissociates in the interface producing the [M + H](+) ion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据