4.8 Article

Fluorescence Quenching of Carbon Nitride Nanosheet through Its Interaction with DNA for Versatile Fluorescence Sensing

期刊

ANALYTICAL CHEMISTRY
卷 85, 期 24, 页码 12182-12188

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac403646n

关键词

-

资金

  1. National Basic Research Program [2010CB732400]
  2. National Natural Science Foundation of China [21075060, 21135002, 21121091]

向作者/读者索取更多资源

This work investigates the interaction of carbon nitride nanosheet (CNNS), a recently developed two-dimensional nanomaterial, with DNA and its fluorescence quenching mechanism on fluorophore labeled single-stranded DNA probes. The static quenching through the photoinduced electron transfer (PET) from the excited fluorophore to the conductive band of CNNS is identified. Utilizing the affinity change of CNNS to DNA probes upon their recognition to targets and the PET-based fluorescence quenching effect, a universal sensing strategy is proposed for design of several homogeneous fluorescence detection methods with short assay time and high sensitivity. This strategy is versatile and can be combined with different amplification tools for quick fluorescence sensing of DNA and extensive DNA related analytes such as metal cations, small molecules, and proteins. As examples, two simple fluorescence detection methods for DNA and Hg2+, one facile detection method coupled with Exo III-mediated target recycling for sensitive DNA analysis, and a ratiometric fluorescence protocol for DNA detection are proposed. This work provides an avenue for understanding the interaction between two-dimensional nanomaterials and biomolecules and designing novel sensing strategies for extending the applications of nanomaterials in bioanalysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据