4.8 Article

Poly(Thymine)-Templated Fluorescent Copper Nanoparticles for Ultrasensitive Label-Free Nuclease Assay and Its Inhibitors Screening

期刊

ANALYTICAL CHEMISTRY
卷 85, 期 24, 页码 12138-12143

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac403354c

关键词

-

资金

  1. Key Project of Natural Science Foundation of China [21175039, 21322509, 21190044]
  2. Research Fund for the Doctoral Program of Higher Education of China [20110161110016]
  3. Hunan Provincial Natural Science Foundation
  4. Hunan Provincial Science and Technology Plan of China [2012TT1003]

向作者/读者索取更多资源

Noble-metal fluorescent nanoparticles have attracted considerable interest on account of their excellent properties and potential applicable importance in many fields. Particularly, we recently found that poly(thymine) (poly T) could template the formation of fluorescent copper nanoparticles (CuNPs), offering admirable potential as novel functional biochemical probes. However, exploration of poly T-templated CuNPs for application is still at a very early stage. We report herein for the first example to develop a novel ultrasensitive label-free method for the nuclease (S1 nuclease as a model system) assay, and its inhibitors screening using the poly T-templated fluorescent CuNPs. In this assay, the signal reporter of poly T of 30 mer (T30) kept the original long state in the absence of nuclease, which could effectively template the formation of fluorescent CuNPs. In the presence of nuclease, poly T was digested to mono- or oligonucleotide fragments with decrease of fluorescence. The proposed method was low-cost and simple in its operation without requirement for complex labeling of probe DNA or sophisticated synthesis of the fluorescent compound. The assay process was very rapid with only 5 min for the formation of fluorescent CuNPs. The capabilities for target detection from complex fluids and screening of nuclease inhibitors were verified. A high sensitivity exhibited with a detectable minimum concentration of 5 X 10(-7) units mu L-1 S1 nuclease, which was about 1-4 orders of magnitude more sensitive than the developed approaches.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据