4.8 Article

Automated Digital Microfluidic Platform for Magnetic-Particle-Based Immunoassays with Optimization by Design of Experiments

期刊

ANALYTICAL CHEMISTRY
卷 85, 期 20, 页码 9638-9646

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac401847x

关键词

-

资金

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)
  2. Abbott Diagnostics
  3. NSERC

向作者/读者索取更多资源

We introduce an automated digital microfluidic (DMF) platform capable of performing immunoassays from sample to analysis with minimal manual intervention. This platform features (a) a 90 Pogo pin interface for digital microfluidic control, (b) an integrated (and motorized) photomultiplier tube for chemiluminescent detection, and (c) a magnetic lens assembly which focuses magnetic fields into a narrow region on the surface of the DMF device, facilitating up to eight simultaneous digital microfluidic magnetic separations. The new platform was used to implement a three-level full factorial design of experiments (DOE) optimization for thyroid-stimulating hormone immunoassays, varying (1) the analyte concentration, (2) the sample incubation time, and (3) the sample volume, resulting in an optimized protocol that reduced the detection limit and sample incubation time by up to 5-fold and 2-fold, respectively, relative to those from previous work. To our knowledge, this is the first report of a DOE optimization for immunoassays in a microfluidic system of any format. We propose that this new platform paves the way for a benchtop tool that is useful for implementing immunoassays in near-patient settings, including community hospitals, physicians' offices, and small clinical laboratories.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据