4.8 Article

Real Time in Situ Chemical Characterization of Submicrometer Organic Particles Using Direct Analysis in Real Time-Mass Spectrometry

期刊

ANALYTICAL CHEMISTRY
卷 85, 期 4, 页码 2087-2095

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac302560c

关键词

-

资金

  1. Department of Energy Office of Science Early Career Research Program
  2. Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division of the U.S. Department of Energy [DE-AC02-05CH11231]

向作者/读者索取更多资源

Direct analysis in real time mass spectrometry (DART-MS) is used to analyze the surface chemical composition of nanometer-sized organic aerosol particles in real time at atmospheric pressure. By introducing a stream of particles in between the DART ionization source and the atmospheric pressure inlet of the mass spectrometer, the aerosol is exposed to a thermal flow of helium or nitrogen gas containing some fraction of metastable helium atoms or nitrogen molecules. In this configuration, the molecular constituents of organic particles are desorbed, ionized, and detected with reduced molecular ion fragmentation, allowing for compositional identification. Aerosol particles detected include alkanes, alkenes, acids, esters, alcohols, aldehydes, and amino acids. The ion signal produced by DART-MS scales with the aerosol surface area rather than volume, suggesting that DART-MS is a viable technique to measure the chemical composition of the particle interface. For oleic acid, particle size measurements of the aerosol stream exiting the ionization region suggest that the probing depth depends upon the desorption temperature, and the probing depth is estimated to be on the order of 5 nm for a 185 nm diameter particle at a DART heater temperature of 500 degrees C with nitrogen as the DART gas. The reaction of ozone with submicrometer oleic acid particles is measured to demonstrate the ability of this technique to identify products and quantify reaction rates in a heterogeneous reaction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据