4.8 Article

Hierarchical placement and associated optoelectronic impact of carbon nanotubes in polymer-fullerene solar cells

向作者/读者索取更多资源

Since their discovery, carbon nanotubes (CNTs) have been considered to be promising candidates for polymer-based solar cells, but their functional incorporation and utilization in such devices have been limited due to processing bottlenecks. Here, we demonstrate the realization of controlled placement of a single-walled CNT (SWNT) monolayer network at four different positions in polymer-fullerene bulk-heterojunction (BHJ) solar cells. SWNTs were deposited by dip-coating from a hydrophilic suspension, and a very brief, largely nondestructive argon plasma treatment of the active layer was utilized for incorporation of a SWNT layer within or above it. We demonstrate that SWNTs on the hole-collection side of the active layer lead to an increase in power conversion efficiency (PCE) of the photovoltaic devices from 4 to 4.9% (under AM 1.5 G, 1.3 suns illumination). This is the highest reported PCE for polymer-based solar cells incorporating CNTs, upon consideration of expected scaling of device parameters for 1 sun illumination. We also observe that SWNTs deposited on the top of the active layer lead to major electro-optical changes in the device functionality, including an increased fluorescence lifetime of poly-3-hexylthiophene (P3HT).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据