4.7 Article

Cytoplasmic and mitochondrial protein translation in axonal and dendritic terminal arborization

期刊

NATURE NEUROSCIENCE
卷 10, 期 7, 页码 828-837

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nn1910

关键词

-

资金

  1. NIDCD NIH HHS [R01 DC005982, R01-DC005982] Funding Source: Medline

向作者/读者索取更多资源

We identified a mutation in Aats-gly (also known as gars or glycyl-tRNA synthetase), the Drosophila melanogaster ortholog of the human GARS gene that is associated with Charcot-Marie-Tooth neuropathy type 2D (CMT2D), from a mosaic genetic screen. Loss of gars in Drosophila neurons preferentially affects the elaboration and stability of terminal arborization of axons and dendrites. The human and Drosophila genes each encode both a cytoplasmic and a mitochondrial isoform. Using additional mutants that selectively disrupt cytoplasmic or mitochondrial protein translation, we found that cytoplasmic protein translation is required for terminal arborization of both dendrites and axons during development. In contrast, disruption of mitochondrial protein translation preferentially affects the maintenance of dendritic arborization in adults. We also provide evidence that human GARS shows equivalent functions in Drosophila, and that CMT2D causal mutations show loss-of-function properties. Our study highlights different demands of protein translation for the development and maintenance of axons and dendrites.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据