4.8 Article

Highly Specific and Ultrasensitive Graphene-Enhanced Electrochemical Detection of Low-Abundance Tumor Cells Using Silica Nanoparticles Coated with Antibody-Conjugated Quantum Dots

期刊

ANALYTICAL CHEMISTRY
卷 85, 期 6, 页码 3166-3173

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac303398b

关键词

-

资金

  1. Nanyang Technological University College of Engineering
  2. Academic Research Fund Tier-1 from the Ministry of Education of Singapore [RG 26/11]
  3. Sing Health Foundation, Singapore National Medical Research Council, Biomedical Research Council of Singapore
  4. Singapore Millennium Foundation

向作者/读者索取更多资源

A dual signal amplification immunosensing strategy that offers high sensitivity and specificity for the detection of low-abundance tumor cells was designed. High sensitivity was achieved by using graphene to modify the immunosensor surface to accelerate electron transfer and quantum dot (QD)-coated silica nanopartides as tracing tags. High specificity was further obtained by the simultaneous measurement of two disease-specific biomarkers on the cell surface using different QD-coated silica nanoparticle tracers. The immunosensor was constructed by covalently immobilized capture antibodies on a chitosan/electrochemically reduced graphene oxide film-modified glass carbon electrode. Cells were captured with a sandwich-type immunoreaction and the different QD-coated silica nanoparticle tracers were captured on the surface of the cells. Each biorecognition event yields a distinct voltammetric peak, which position and size reflects the corresponding identity and amount of the respective antigen. This strategy was vividly demonstrated by the simultaneous immunoassay of EpCAM and GPC3 antigens on the surface of the human liver cancer cell line Hep3B using anti-EpCAM-CdTe- and anti-GPC3-ZnSe-coated silica nanoparticle tracers. The two tracers gave comparable sensitivity, and the immunosensor exhibited high sensitivity and specificity with excellent stability, reproducibility, and accuracy, indicating its wide range of potential applications in clinical and molecular diagnostics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据