4.8 Article

Ultrasensitive Apurinic/Apyrimidinic Endonuclease 1 Immunosensing Based on Self-Enhanced Electrochemiluminescence of a Ru(II) Complex

期刊

ANALYTICAL CHEMISTRY
卷 86, 期 2, 页码 1053-1060

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac403019e

关键词

-

资金

  1. NNSF of China [21275119, 21105081, 21075100]
  2. Research Fund for the Doctoral Program of Higher Education (RFDP) [20110182120010]
  3. Ministry of Education of China [708073]
  4. Specialized Research Fund for the Doctoral Program of Higher Education [20100182110015]
  5. Natural Science Foundation Project of Chongqing City [CSTC-2010BB4121, CSTC-2009BA1003]
  6. Fundamental Research Funds for the Central Universities, China [XDJK2010C062, XDJK2012A004]

向作者/读者索取更多资源

An alternative signal on immunosensor for ultrasensitive detection of apurinic/apyrimidinic endonuclease 1 (APE-1) was designed utilizing the self-enhanced electrochemiluminescence (ECL) of a novel Ru(II) complex functionalized coil-like nanocomposite as signal labels. The desirable self-enhanced ECL luminophore was achieved by combining the coreactant of poly(ethylenimine) (PEI) and the luminophor of bis(2,2'-bipyridine)-5-amino-1,10-phenanthroline ruthenium(II) [Ru(bpy)(2)(5-NH2-1,10-phen)(2+)] to form one novel Ru(II) complex, which exhibited significantly enhanced ECL efficiency and stability. Moreover, the carbon nanotubes (CNTs) were employed as nanocarriers for self-enhanced Ru(II) complex loading via pi-pi stacking to obtain the coil-like nanocomposite to act as signal probe. Compared with traditional ECL immunoassay, our proposed strategy is simple and sensitive, avoiding the adding of any coreactant into testing solution for signal amplification, and shows a detection limit down to subfemtogram per milliliter level under the optimized experimental condition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据