4.6 Article

Quantum trajectories in complex space

期刊

PHYSICAL REVIEW A
卷 76, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.76.012115

关键词

-

向作者/读者索取更多资源

Quantum trajectories in complex space in the framework of the quantum Hamilton-Jacobi formalism are investigated. For time-dependent problems, the complex quantum trajectories determined from the exact analytical wave function for the free Gaussian wave packet and the coherent state in the harmonic potential are used to demonstrate that the information transported by the particles in the complex space can be used to synthesize the time-dependent wave function on the real axis. For time-independent problems, the exact complex quantum trajectories for the Eckart potential are obtained by numerically integrating the equations of motion. The unusual structure of the total potential (the sum of the classical and the quantum potentials) for the stationary states for the Eckart potential is pointed out. The variations of the complex-valued kinetic energy, classical potential, and quantum potential along the complex quantum trajectories are analyzed. This paper not only analyzes complex quantum trajectories for time-dependent and time-independent systems but also provides a unified description for complex quantum trajectories for one-dimensional problems in the quantum Hamilton-Jacobi formalism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据