4.6 Article

Transpleural ventilation of explanted human lungs

期刊

THORAX
卷 62, 期 7, 页码 623-630

出版社

BMJ PUBLISHING GROUP
DOI: 10.1136/thx.2005.053256

关键词

-

资金

  1. NHLBI NIH HHS [R01 HL062194, R01 HL62194, R01 HL070037, R01 HL070037-05] Funding Source: Medline

向作者/读者索取更多资源

Background: The hypothesis that ventilation of emphysematous lungs would be enhanced by communication with the parenchyma through holes in the pleural surface was tested. Methods: Fresh human lungs were obtained from patients with emphysema undergoing lung transplantation. Control human lungs were obtained from organ donors whose lungs, for technical reasons, were not considered suitable for implantation. Lungs were ventilated through the bronchial tree or transpleurally via a small hole communicating with the underlying parenchyma over which a flanged silicone tube had been cemented to the surface of the lung (spiracle). Measurements included flow-volume-time curves during passive deflation via each pathway; volume of trapped gas recovered from lungs via spiracles when no additional gas was obtainable passively from the airways; and magnetic resonance imaging assessment of spatial distribution of hyperpolarised helium (He-3) administered through either the airways or spiracles. Results: In emphysematous lungs, passively expelled volumes at 20 s were 94% greater through spiracles than via the airways. Following passive deflation from the airways, an average of 1.07 litres of trapped gas volume was recoverable via spiracles. Regions were ventilated by spiracles that were less well ventilated via bronchi. Conclusions: Because of the extensive collateral ventilation present in emphysematous lungs, direct communication with the lung parenchyma through non-anatomical pathways has the potential to improve the mechanics of breathing and hence ventilation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据