4.7 Review

Calcium signalling and pancreatic cell death: apoptosis or necrosis?

期刊

CELL DEATH AND DIFFERENTIATION
卷 14, 期 7, 页码 1285-1294

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.cdd.4402150

关键词

calcium; apoptosis; necrosis; pancreatitis; ROS; NQO1

资金

  1. Medical Research Council [G0300076, G8801575] Funding Source: Medline
  2. Medical Research Council [G8801575, G0300076] Funding Source: researchfish
  3. MRC [G0300076, G8801575] Funding Source: UKRI

向作者/读者索取更多资源

Secretagogues, such as cholecystokinin and acetylcholine, utilise a variety of second messengers (inositol trisphosphate, cADPR and nicotinic acid adenine dinucleotide phosphate) to induce specific oscillatory patterns of calcium (Ca2+) signals in pancreatic acinar cells. These are tightly controlled in a spatiotemporal manner, and are coupled to mitochondrial metabolism necessary to fuel secretion. When Ca2+ homeostasis is disrupted by known precipitants of acute pancreatitis, for example, hyperstimulation or non-oxidative ethanol metabolites, Ca2+ stores (endoplasmic reticulum and acidic pool) become depleted and sustained cytosolic [Ca2+] elevations replace transient signals, leading to severe consequences. Sustained mitochondrial depolarisation, possibly via opening of the mitochondrial permeability transition pore (MPTP), elicits cellular ATP depletion that paralyses energy-dependent Ca2+ pumps causing cytosolic Ca2+ overload, while digestive enzymes are activated prematurely within the cell; Ca2+-dependent cellular necrosis ensues. However, when stress to the acinar cell is milder, for example, by application of the oxidant menadione, release of Ca2+ from stores leads to oscillatory global waves, associated with partial mitochondrial depolarisation and transient MPTP opening; apoptotic cell death is promoted via the intrinsic pathway, when associated with generation of reactive oxygen species. Apoptosis, induced by menadione or bile acids, is potentiated by inhibition of an endogenous detoxifying enzyme NAD(P)H:quinone oxidoreductase 1 (NQO1), suggesting its importance as a defence mechanism that may influence cell fate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据