4.5 Article

Complexity of lipid domains and rafts in giant unilamellar vesicles revealed by combining imaging and microscopic and macroscopic time-resolved fluorescence

期刊

BIOPHYSICAL JOURNAL
卷 93, 期 2, 页码 539-553

出版社

CELL PRESS
DOI: 10.1529/biophysj.106.098822

关键词

-

向作者/读者索取更多资源

The application of fluorescence lifetime imaging microscopy to study gel/fluid and raftlike lipid domains in giant unilamellar vesicles (GUVs) is demonstrated here. Different regions of the ternary dipalmitoylphosphatidylcholine/dioleoylphosphatidylcholine/cholesterol phase diagram were studied. The head-labeled phospholipid Rhodamine-dioleoylphosphatidylethanolamine (Rhod-DOPE) was used as fluorescent probe. Gel/fluid and liquid-ordered (l(o))/liquid-disordered (l(d)) phase separation were clearly visualized upon two-photon excitation. Fluorescence intensity decays in different regions of a GUV were also obtained with the microscope in fixed laser-beam configuration. The ensemble behavior of the system was studied by obtaining fluorescence intensity decays of Rhod- DOPE in nongiant vesicle suspensions. The fingerprints for gel/fluid coexistence and for the presence of l(o) raftlike phase, based on fluorescence lifetime imaging microscopy histograms and images, and on the fluorescence intensity decay parameters of Rhod-DOPE, are presented. The presence of three lipid phases in one single GUV is detected unequivocally. From the comparison of lifetime parameters, it can be concluded that the l(o) phase is formed in the binary dipalmitoylphosphatidylcholine/cholesterol but not in the dioleoylphosphatidylcholine/cholesterol mixture. The domains apparent in fluorescence intensity images have a more complex substructure revealed by analysis of the lifetime data. The potential applications of this combined imaging/microscopic/macroscopic methodology are discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据