4.8 Article

A Label-Free Silicon Quantum Dots-Based Photoluminescence Sensor for Ultrasensitive Detection of Pesticides

期刊

ANALYTICAL CHEMISTRY
卷 85, 期 23, 页码 11464-11470

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac403257p

关键词

-

资金

  1. National Natural Science Foundation of China [21275051, 21375037]
  2. Scientific Research Fund of Hunan Provincial Education Department [12A084]
  3. Science and Technology Department [13JJ2020]
  4. Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province

向作者/读者索取更多资源

Sensitive, rapid, and simple detection methods for the screening of extensively used organophosphorus pesticides and highly toxic nerve agents are in urgent demand. A novel label-free silicon quantum dots (SiQDs)-based sensor was designed for ultrasensitive detection of pesticides. This sensing strategy involves the reaction of acetylcholine chloride (ACh) with acetylcholinesterase (AChE) to form choline that is in turn catalytically oxidized by choline coddase (ChOx) to produce betaine and H2O2 which can quench the photoluminescence (PL) of SiQDs. Upon the addition of pesticides, the activity of AChE is inhibited, leading to the decrease of the generated H2O2, and hence the PL of SiQDs increases. By measuring the increase in SiQDs PL, the inhibition efficiency of pesticide to AChE activity was evaluated. It was found that the inhibition efficiency was linearly dependent on the logarithm of the pesticides concentration. Consequently, pesticides, such as carbaryl, parathion, diazinon, and phorate, were determined with the SiQDs PL sensing method. The lowest detectable concentrations for carbaryl, parathion, diazinon, and phorate reached 7.25 x 10(-9), 3.25 x 10(-8), 6.76 x 10(-8), and 1.9 x 10(-7) g/L, respectively, which were much lower than those previously reported. The detecting results of pesticide residues in food samples via this method agree well with those from high-performance liquid chromatography. The simple strategy reported here should be suitable for on-site pesticides detection, especially in combination with other portable platforms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据