4.8 Article

Proteomic Identification and Analysis of K63-Linked Ubiquitin Conjugates

期刊

ANALYTICAL CHEMISTRY
卷 84, 期 22, 页码 10121-10128

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac302675y

关键词

-

资金

  1. NIH [GM021248, GM065334]
  2. Bailey Fellowship from the University of Maryland

向作者/读者索取更多资源

Post-translational modification of proteins by covalent attachment of ubiquitin or a polyubiquitin chain is involved in myriad of processes in eukaryotic cells. The particular outcome of ubiquitination is directed by the length of the ubiquitin conjugate and its linkage composition. Among seven possible isopeptide linkage sites in ubiquitin, K48 and K63 occur most commonly and act as distinct cellular signals. Strategies are reported here for analysis of linkage sites and complexity of K63-linked polyubiquitin chains, based on rapid chemical proteolysis at aspartate residues combined with immunoprecipitation and mass spectrometry. Rapid chemical proteolysis at aspartate residues results in K63-linked peptides with truncated branches, which enable identification and characterization of stretches of consecutive K63 linkages on generally available instruments. A characteristic cleavage pattern and a characteristic fragmentation pattern allow recognition of K63 oligomers in proteolytic mixtures. Engineered K63-linked polyubiquitin chains of defined lengths were used to evaluate and demonstrate the method. In-gel microwave-supported acid hydrolysis was used to observe peptides specific to K63-linked ubiquitin dimers and trimers. Acid hydrolysis in solution, used in conjunction with linkage-specific immunoprecipitation, allowed more complex K63-linked branches to be characterized. Finally, a substrate protein, UbcH5b, was conjugated to monoubiquitin and to polyubiquitin chains containing only K63 linkages, and the sites of conjugation and chain lengths were characterized.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据