4.6 Article

Exciton and electron-hole plasma formation dynamics in ZnO

期刊

PHYSICAL REVIEW B
卷 76, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.76.045214

关键词

-

向作者/读者索取更多资源

We employ optical pump-THz probe measurements to study the formation of excitons and electron-hole plasmas following photogeneration of a hot electron-hole gas in the direct gap semiconductor zinc oxide. Below the Mott density, we directly observe the evolution of the hot electron-hole plasma into an insulating exciton gas in the 10 to 100 ps following photoexcitation. The temperature dependence of this process reveals that the rate determining step for exciton formation involves acoustic phonon emission. Above the Mott density, the density of the hot electron-hole plasma initially decreases very rapidly (similar to 1.5 ps) through Auger annihilation until a stable plasma is formed close to the Mott density. In contrast to exciton formation, Auger annihilation is found to be independent of lattice temperature, occurring while the plasma is still hot.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据