4.1 Article

Self-orgranizing adaptive fuzzy neural control for a class of nonlinear systems

期刊

IEEE TRANSACTIONS ON NEURAL NETWORKS
卷 18, 期 4, 页码 1232-1241

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TNN.2007.899178

关键词

adaptive control; fuzzy neural network (FNN); rule elimination; rule generation; sliding-mode control

向作者/读者索取更多资源

This paper proposes a self-organizing adaptive fuzzy neural control (SAFNC) via sliding-mode approach for a class of nonlinear systems. The proposed SAFNC system is comprised of a computation controller and a supervisory controller. The computation controller including a self-organizing fuzzy neural network (SOFNN) identifier is the principal controller. The SOFNN identifier is used to online estimate the controlled system dynamics with the structure and parameter learning phases of fuzzy neural network (FNN), simultaneously. The structure learning phase possesses the ability of online generation and elimination of fuzzy rules to achieve optimal neural structure, and the parameter learning phase adjusts the interconnection weights of neural network to achieve favorable approximation performance. The supervisory controller is used to achieve the L-2-norm bound tracking performance with a desired attenuation level. Moreover, all the parameter learning algorithms are derived based on Lyapunov function candidate, thus the system stability can be guaranteed. Finally, simulation results show that the SAFNC can achieve favorable tracking performances.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据