4.6 Article

Toward improving the therapeutic ratio in stereotactic radiosurgery: selective modulation of the radiation responses of both normal tissues and tumor

期刊

JOURNAL OF NEUROSURGERY
卷 107, 期 1, 页码 84-93

出版社

AMER ASSOC NEUROLOGICAL SURGEONS
DOI: 10.3171/JNS-07/07/0084

关键词

dose-volume-latency effect; modulation of CNS damage; radiation enhancer; radiation necrosis

向作者/读者索取更多资源

A review of the radiobiological factors that influence the response of the brain to radiation is provided in relation to stereotactic radiosurgery (SRS). The prospects for intervention after radiation treatment to selectively modulate the expression of late central nervous system (CNS) injury is considered, as well as an account of recent interest in the use of radiation enhancers to selectively increase the response Of tumors to radiation. Brain necrosis in humans, after conventional irradiation, indicates that the risk of necrosis increases rapidly after an equivalent single dose of 12 or 13 Gy. When single-dose treatments are extended due to Co-60 decay or planned extension of treatment times, account should he taken of the effects of the repair of sublethal radiation damage to DNA oil the efficacy of treatment. Both repair capacity and repair kinetics will also influence tumor control, but parameters to quantify this effect have not yet been established. The volume of CNS tissue that has been irradiated affects the tissue response, but this effect is only significant for Volumes less than 0.05 cm(3). The gain obtained from irradiation of small volumes is reduced, however, when focal irradiation is given within a wider field of irradiation. Based on a vascular hypothesis explaining the pathogenesis of late CNS damage, approaches designed to selectively modulate the frequency of late CNS damage have been validated. Given the high intrinsic radioresistance of some tumors, as opposed to the presence of hypoxia, an interest has developed in the use of selective radiation enhancers in the treatment of tumors. The compound presently available has proved to be disappointing clinically due to toxicity at effective doses, when repeated administration is required. However, when given at high single doses it is less toxic and may be more effective. Less toxic radiation enhancers need to be developed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据