4.8 Article

Fluorescently Cationic Conjugated Polymer as an Indicator of Ligase Chain Reaction for Sensitive and Homogeneous Detection of Single Nucleotide Polymorphism

期刊

ANALYTICAL CHEMISTRY
卷 84, 期 8, 页码 3739-3744

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac300314c

关键词

-

资金

  1. National Natural Science Foundation of China [21075028]
  2. Specialized Research Fund for the Doctoral Program of Higher Education, China [20070075003, 20091301120003]
  3. National Science Foundation of Hebei Province, China [B2009000170]

向作者/读者索取更多资源

Ligase chain reaction (LCR) offers a simple and robust alternative platform for nucleic acid amplification, but its application has been limited because the LCR products are mostly detected by gel electrophoresis separation or heterogeneous analysis. In this paper, we report a novel homogeneous LCR assay by using cationic conjugated polymers (CCPs) as an indicator for detection of single-nucleotide polymorphism (SNP). For LCR, we design two pairs of unique target-complement probes. Each pair of probes contains two adjacent probes, in which one probe is designed with phosphorothioate modification at its 3'-end, and the other probe is labeled with fluorescein at its 5'-end. After the LCR, the the two adjacent probes are ligated to form one DNA strand with a fluorescein label at its 5'-end and phosphorothioate modification at its 3'-end, which is resistant to the exonuclease I and exonuclease III degradation. When the CCP is added, because of the strong electrostatic interactions between CCP and DNA, effective fluorescence resonance energy transfer (FRET) from the CCP to the fluorescein-labeled DNA can be observed. In contrast, the unligated fluorescein-labeled probes are degraded to the mononucleotides by exonuclease I and exonuclease III. Introduction of CCP leads to inefficient FRET results because much weaker electrostatic interactions between the fluorescein-labeled mononucleotides and CCP keep the fluorescein far away from CCP. Accordingly, homogeneous LCR for SNP detection is performed successfully. The method is sensitive and specific enough to detect 1 fM (600 zmol) DNA molecules. It is possible to quantify SNP and accurately determine the allele frequency as low as 1.0%. This proposed assay strategy extends the application of LCR and provides a new platform for homogeneous detection of SNP.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据