4.8 Article

Engineering Nanostructured Porous SiO2 Surfaces for Bacteria Detection via Direct Cell Capture

期刊

ANALYTICAL CHEMISTRY
卷 83, 期 9, 页码 3282-3289

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac200407w

关键词

-

资金

  1. Isreal Science Foundation [1118/08]
  2. European Union
  3. Wilbush J. Fund
  4. Technion
  5. Russell Berrie Nanotechnology Institute

向作者/读者索取更多资源

An optical label-free biosensing platform for bacteria detection (Escherichia coli K12 as a model system) based on nanostructured oxidized porous silicon (PSiO2) is introduced. The biosensor is designed to directly capture the target bacteria cells on its surface with no prior sample processing (such as cell lysis). The optical reflectivity spectrum of the PSiO2 nanostructure displays Fabry Perot fringes characteristic of thin-film interference, enabling direct, real-time observation of bacteria attachment within minutes. The PSiO2 optical nanostructure is synthesized and used as the optical transducer element. The porous surface is conjugated with specific monoclonal antibodies (immunoglobulin G's) to provide the active component of the biosensor. The immobilization of the antibodies onto the biosensor system is confirmed by attenuated total reflectance Fourier transform infrared spectroscopy, fluorescent labeling experiments, and refractive interferometric Fourier transform spectroscopy. We show that the immobilized antibodies maintain their immunoactivity and specificity when attached to the sensor surface. Exposure of these nanostructures to the target bacteria results in direct cell capture onto the biosensor surface. These specific binding events induce predictable changes in the thin-film optical interference spectrum of the biosensor. Our preliminary studies demonstrate the applicability of these biosensors for the detection of low bacterial concentrations. The current detection limit of E. coli K12 bacteria is 10(4) cells/mL within several minutes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据