4.7 Article

Combination of the ALCR/alcA ethanol switch and GAL4/VP16-UAS enhancer trap system enables spatial and temporal control of transgene expression in Arabidopsis

期刊

PLANT BIOTECHNOLOGY JOURNAL
卷 5, 期 4, 页码 477-482

出版社

BLACKWELL PUBLISHING
DOI: 10.1111/j.1467-7652.2007.00255.x

关键词

alc switch; Arabidopsis; enhancer trap; GAL4/VP16; beta-glucuronidase (GUS); green fluorescent protein (GFP)

向作者/读者索取更多资源

The experimental control of gene expression in specific tissues or cells at defined time points is a useful tool for the analysis of gene function. GAL4/VP16-UAS enhancer trap lines can be used to selectively express genes in specific tissues or cells, and an ethanol-inducible system can help to control the time of expression. In this study, the combination of the two methods allowed the successful regulation of gene expression in both time and space. For this purpose, a binary vector, 962-UAS::GUS, was constructed in which the ALCR activator and beta-glucuronidase (GUS) reporter gene were placed under the control of upstream activator sequence (UAS) elements and the alcA response element, respectively. Three different GAL4/VP16-UAS enhancer trap lines of Arabidopsis were transformed, resulting in transgenic plants in which GUS activity was detected only on ethanol induction and exclusively in the predicted tissues of the enhancer trap lines. As a library of different enhancer trap lines with distinct green fluorescent protein (GFP) patterns exist, transformation with a similar vector, in which GUS is replaced by another gene, would enable the control of the time and place of transgene expression. We have constructed two vectors for easy cloning of the gene of interest, one with a polylinker site and one that is compatible with the GATEWAY (TM) vector conversion system. The method can be extended to other species when enhancer trap lines become available.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据