4.8 Article

Enhanced Lysozyme Imprinting Over Nanoparticles Functionalized with Carboxyl Groups for Noncovalent Template Sorption

期刊

ANALYTICAL CHEMISTRY
卷 83, 期 4, 页码 1431-1436

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac1029924

关键词

-

资金

  1. National Natural Science Foundation of China [21074061, 20574038]
  2. Natural Science Foundation of Tianjin [09JCYBJC02900]

向作者/读者索取更多资源

Surface molecular imprinting, in particular over nanosized support materials, is very suitable for a template of bulky structure like protein. Inspired by the surface template immobilization method reported previously, we herein demonstrate an alternative strategy for enhancing specific recognition of core shell protein-imprinted nanoparticles through prefunctionalizing the cores with noncovalent template sorption groups. For proof of this concept, silica nanoparticles chosen as the core materials were modified consecutively with 3-aminopropyltrimethoxysilane and maleic anhydride to introduce polymerizable double bonds and terminal carboxyl groups, hence capable of physically adsorbing the print protein. With lysozyme as a template, thin protein-imprinted shells were fabricated according to our newly developed approach for surface protein imprinting over nanoparticles. The rebinding experiments confirmed that the introduction of the carboxyl groups could remarkably improve the imprinting effect in relation to a significantly increased imprinting factor and specific rebinding capacity. Moreover, in contrast to the harsh template removal conditions required for the covalent template coupling approach, the template removal during the imprinted particle synthesis as well as desorption after rebinding could be mildly achieved via washing with salt solution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据