4.6 Article

Real-time nonlinear embedded control for an autonomous quadrotor helicopter

期刊

JOURNAL OF GUIDANCE CONTROL AND DYNAMICS
卷 30, 期 4, 页码 1049-1061

出版社

AMER INST AERONAUTICS ASTRONAUTICS
DOI: 10.2514/1.27882

关键词

-

向作者/读者索取更多资源

Control system design of aerospace vehicles with actuator saturation is an important practical design problem that many previous approaches to nonlinear autopilot design did not consider. In particular, small unmanned aerial vehicle rotorcraft actuators often have physical limitations such as a restricted onboard power supply. Disregard of actuator saturation can affect the final performance, but the reduction in performance can be mitigated if actuator saturation is included in the controller design. In this paper, we propose a nested-saturation-based nonlinear controller for the stabilization of a rotary-wing aircraft. This control strategy allows the incorporation of actuator magnitude saturation and has satisfactory dynamic performance. The nested-saturation technique enables the controller to ensure the global asymptotic stability of a quadrotor helicopter while improving the performance of the closed-loop system. By using Lyapunov analysis, the convergence property is established for the complete nonlinear model of the quadrotor rotorcraft. Simulation results show the performance of the proposed control strategy. Using embedded sensors and onboard control, we performed a real-time autonomous flight. Indeed, experimental results have shown that the proposed control strategy is able to autonomously perform the tasks of taking off, hovering, and landing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据