4.8 Article

Temporal Resolution in Electrochemical Imaging on Single PC12 Cells Using Amperometry and Voltammetry at Microelectrode Arrays

期刊

ANALYTICAL CHEMISTRY
卷 83, 期 2, 页码 571-577

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac102502g

关键词

-

资金

  1. NIH
  2. Swedish Research Council
  3. European Union

向作者/读者索取更多资源

Carbon-fiber-microelectrode arrays (MEAs) have been utilized to electrochemically image neurochemical secretion from individual pheochromocytoma (PC12) cells. Dopamine release events were electrochemically monitored from seven different locations on single PC12 cells using alternately constant-potential amperometry and fast-scan cyclic voltammetry (FSCV). Cyclic voltammetry, when compared to amperometry, can provide excellent chemical resolution; however, spatial and temporal resolution are both compromised. The spatial and temporal resolution of these two methods have been quantitatively compared and the differences explained using models of molecular diffusion at the nanogap between the electrode and the cell. A numerical simulation of the molecular flux reveals that the diffusion of dopamine molecules and electrochemical reactions both play important roles in the temporal resolution of electrochemical imaging. The simulation also reveals that the diffusion and electrode potential cause the differences in signal crosstalk between electrodes when comparing amperometry and FSCV.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据