4.8 Article

High-Throughput Screening of Drug-Lipid Membrane Interactions via Counter-Propagating Second Harmonic Generation Imaging

期刊

ANALYTICAL CHEMISTRY
卷 83, 期 15, 页码 5979-5988

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac2009614

关键词

-

资金

  1. National Institutes of Health [R01-GM068120]

向作者/读者索取更多资源

Here we report the use of counter-propagating second harmonic generation (SHG) to image the interactions between the local anesthetic tetracaine and a multicomponent planar supported lipid bilayer array in a label-free manner. The lipid bilayer arrays, prepared using a 3D continuous flow microspotter, allow the effects of lipid phase and cholesterol content on tetracaine binding to be examined simultaneously. SHG images show that tetracaine has a higher binding affinity to liquid-crystalline phase lipids than to solid-gel phase lipids. The presence of 28 mol % cholesterol decreased the binding affinity of tetracaine to bilayers composed of the mixed chain lipid, 1-steroyl-2-oleoyl-sn-glycero-3-phophocholine (SOPC), and the saturated lipids 1,2-dimyristoyl-sn-glycero-3-phophocholine (DMPC) and 1,2-dipamitoyl-sn-glycero-3-phophocholine (DPPC) while having no effect on diunsaturated 1,2-dioleoyl-sn-glycero-3-phophocholine (DOPC). The maximum surface excess of tetracaine increases with the degree of unsaturation of the phospholipids and decreases with cholesterol in the lipid bilayers. The paper demonstrates that SHG imaging is a sensitive technique that can directly image and quantitatively measure the association of a drug to a multicomponent lipid bilayer array, providing a high-throughput means to assess drug-membrane interactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据