4.6 Article

Enterohemorrhagic Escherichia coli biofilms are inhibited by 7-hydroxyindole and stimulated by isatin

期刊

APPLIED AND ENVIRONMENTAL MICROBIOLOGY
卷 73, 期 13, 页码 4100-4109

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.00360-07

关键词

-

资金

  1. NIBIB NIH HHS [EB003872-01A1, R01 EB003872] Funding Source: Medline

向作者/读者索取更多资源

Since indole is present at up to 500 mu M in the stationary phase and is an interspecies biofilm signal (J. Lee, A. Jayaraman, and T. K. Wood, BMC Microbiol. 7:42,2007), we investigated hydroxyindoles as biofilm signals and found them also to be nontoxic interspecies biofilm signals for enterohemorrhagic Escherichia coli O157:117 (EHEC), E. coli K-12, and Pseudomonas aeruginosa. The genetic basis of EHEC biofilm formation was also explored, and notably, virulence genes in biofilm cells were repressed compared to those in planktonic cells. In Luria-Bertani medium (LB) on polystyrene with quiescent conditions, 7-hydroxyindole decreased EHEC biofilm formation 27-fold and decreased K-12 biofilm formation 8-fold without affecting the growth of planktonic cells. 5-Hydroxyindole also decreased biofilm formation 11-fold for EHEC and 6-fold for K-12. In contrast, isatin (indole-2,3-dione) increased biofilm formation fourfold for EHEC, while it had no effect for K-12. When continuous-flow chambers were used, confocal microscopy revealed that EHEC biofilm formation was reduced 6-fold by indole and 10-fold by 7-hydroxyindole in LB. Whole-transcriptome analysis revealed that isatin represses indole synthesis by repressing tnaABC 7- to 37-fold in EHEC, and extracellular indole levels were found to be 20-fold lower. Furthermore, isatin repressed the AI-2 transporters lsrABCDFGKR, while significantly inducing the flagellar genes flgABCDEFGHIJK and fliAEFGILMNOPQ (which led to a 50% increase in motility). 7-Hydroxyindole induces the biofilm inhibitor/stress regulator ycfR and represses cysADIJPU/fliC (which led to a 50% reduction in motility) and purBCDEFHKLMNRT. Isogenic mutants showed that 7-hydroxyindole inhibits E. coli biofilm through cysteine metabolism. 7-Hydroxyindole (500 mu M) also stimulates P. aeruginosa PAO1 biofilm formation twofold; therefore, hydroxyindoles are interspecies bacterial signals, and 7-hydroxyindole is a potent EHEC biofilm inhibitor.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据