4.8 Article

Integration of layered chondrocyte-seeded alginate hydrogel scaffolds

期刊

BIOMATERIALS
卷 28, 期 19, 页码 2987-2993

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2007.02.035

关键词

cartilage tissue engineering; interface; alginate; micropatterning; mechanical properties

向作者/读者索取更多资源

Motivated by the necessity to engineer appropriately stratified cartilage, the shear mechanics of layered, bovine chondrocyte-seeded 20 mg/mL alginate scaffolds were investigated and related to the structure and biochemical composition. Chondrocyte-seeded alginate scaffolds were exposed to a calcium-chelating solution, layered, crosslinked in CaCl2, and cultured for 10 weeks. The shear mechanical properties of the layered gels were statistically similar to those of the non-layered controls. Shear modulus of layered gels increased by approximately six-fold while toughness and shear strength increased by more than two-fold during the culture period. Hydroxyproline content in both layered gels and controls had statistically significant increases after 6 weeks. Glycosaminoglycan (GAG) content of controls increased throughout culture while GAG content in layered gels leveled off after 4 weeks. Hematoxylin and eosin histological staining showed tissue growth at the interface over the first 4 weeks. Shear mechanical properties in the engineered tissues showed significant correlations to hydroxyproline content. Dependence of in-------:aterfacial mechanical properties on hydroxyproline content was most evident for layered gets when compared to controls, especially for toughness and shear strength. Additionally, interfacial properties showed almost no dependence on GAG content. These findings demonstrate the feasibility of creating stratified engineered tissues through layering and that collagen deposition is necessary for interfacial integrity. (C) 2007 Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据