4.5 Article

Effectiveness of crystallization inhibitors in preventing salt damage in building materials

期刊

JOURNAL OF CULTURAL HERITAGE
卷 8, 期 3, 页码 223-234

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.culher.2007.06.001

关键词

crystallization inhibitors; salt damage; building materials

向作者/读者索取更多资源

Salt crystallization in porous materials constitutes one of the most frequent causes of decay of buildings in a wide range of environments. Up to now no definitive solution exists to limit salt crystallization damage, unless of removing either the salt or the moisture. The possibility of making the process of salt crystallization less harmful by means of crystallization inhibitors has only recently been considered. Crystallization inhibitors are known to delay nucleation and to modify the growth rate of the crystals in bulk solution, but their possible application for the prevention of salt decay in porous material is still controversial. The present paper reports a series of systematic investigations performed on three different materials (a limestone, a sandstone and a brick) contaminated with two types of salt (sodium chloride and sodium sulphate) and two types of inhibitors (sodium-ferrocyanide and diethylene-triaminepentakis methylphosphonic acid). Drying experiments have been performed to study the effect of the inhibitors on the salt solution transport. Accelerated crystallization experiments have investigated the possible consequences of the application of the inhibitor on salt crystallization damage (quantified as material loss). Environmental Scanning Electron Microscope (ESEM) has been used to study how the presence of inhibitors affects the crystallization morphology of salt in the material. The results show that the effect of the inhibitor strongly depends on the type of substrate. NaFeC, when applied on NaCl contaminated limestone and brick was able to enhance the drying and to favour the appearance of efflorescences, whereas the effect on the sandstone was very limited. DTPMP enhanced the drying of Na2SO4 laden sandstone, but had no influence on the drying of both brick and limestone. These different have been attributed to the properties of the materials, in particular pore size distribution and composition. The effects of the inhibitor on salt crystallization damage were less evident: no differences in surface damage, quantified as material loss, were observed between specimens with and without inhibitor. (c) 2007 Elsevier Masson SAS. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据