4.8 Article

Combination of DNA Ligase Reaction and Gold Nanoparticle-Quenched Fluorescent Oligonucleotides: A Simple and Efficient Approach for Fluorescent Assaying of Single-Nucleotide Polymorphisms

期刊

ANALYTICAL CHEMISTRY
卷 82, 期 18, 页码 7684-7690

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac101503t

关键词

-

资金

  1. National Natural Science Foundation of China [20775005]
  2. National Grand Program on Key Infectious Disease of China [2009ZX10004-312]
  3. Hunan University [521105668]

向作者/读者索取更多资源

A new fluorescent sensing approach for detection of single-nucleotide polymorphisms (SNPs) is proposed based on the ligase reaction and gold nanoparticle (AuNPs)-quenched fluorescent oligonucleotides. The design exploits the strong fluorescence quenching of AuNPs for organic dyes and the difference in noncovalent interactions of the nanoparticles with single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA), where ssDNA can be adsorbed onto the surface of AuNPs while dsDNA cannot be. In the assay, two half primer DNA probes, one being labeled with a dye and the other being phosphorylated, were first incubated with a target DNA template. In the presence of DNA ligase, the two captured ssDNAs are linked for the perfectly matched DNA target to form a stable duplex, but the duplex could not be formed by the single-base mismatched DNA template. After addition of AuNPs, the fluorescence of dye-tagged DNA probe will be efficiently quenched unless the perfectly matched DNA target is present. To demonstrate the feasibility of this design, the performance of SNP detection using two different DNA ligases, T4 DNA ligase and Eschcrichia coli DNA ligase, were investigated. In the case of T4 DNA ligase, the signal enhancement of the dye-tagged DNA for perfectly matched DNA target is 4.6-fold higher than that for the single-base mismatched DNA. While in the presence of E. coli DNA ligase, the value raises to be 30.2, suggesting excellent capability for SNP discrimination.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据