4.5 Article

QTL-based analysis of genotype-by-environment interaction for grain yield of rice in stress and non-stress environments

期刊

EUPHYTICA
卷 156, 期 1-2, 页码 213-226

出版社

SPRINGER
DOI: 10.1007/s10681-007-9368-8

关键词

genotype-by-environment interaction; marker-assisted selection; Oryza sativa L; QTL; rice

向作者/读者索取更多资源

Use of DNA-based markers can accelerate cultivar development in variable cultivation environments since, in contrast to phenotype, DNA markers are environment-independent. In an effort to elucidate the genetic basis of genotype-by-environment interaction (G x E) for yield of rice (Oryza sativa L.), the associations between 139 AFLP markers and grain yield were determined for rice grown in fresh water (EC of 0.65 dS m(-1) and saline conditions (EC of 4-8 dS m(-1)) with 0 kg ha(-1) or 100 kg ha(-1) nitrogen fertilizer in the years 2000 and 2001. A population of recombinant inbred lines of rice, developed from an IR29 x Pokkali cross, was used in the study. Both genotype x salinity and genotype x nitrogen level interactions were significant, with the genotype x salinity interaction being stronger. Through multiple regression analysis using a stepwise procedure for selecting markers, 36 markers were detected for grain yield in the four test conditions and of these 28 were detected in only one test condition implying strong environmental specificity for yield QTL expression. However, the fact that eight QTLs were detected in more than one test condition points to the existence of wide-adaptability genes in this cross. Markers with significant associations with yield explained between 37% and 48% of the yield variation in each test condition. Superior genotypes of rice were identified in all four test conditions based on their marker signatures. Furthermore, across N fertilizer regimes, yield predicted from summed additive effects of QTLs were significantly correlated with observed yield in the same year and across years. Thus marker-assisted selection can help breeders overcome the problem of low selection efficiency encountered during phenotypic selection for yield in stress environments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据