4.8 Article

Electrochemical Approach for Detection of Extracellular Oxygen Released from Erythrocytes Based on Graphene Film Integrated with Laccase and 2,2-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)

期刊

ANALYTICAL CHEMISTRY
卷 82, 期 9, 页码 3588-3596

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac100621r

关键词

-

资金

  1. National Natural Science Foundation of China [20673057, 20773067, 20833006, 20905036]
  2. Program for New Century Excellent Talents in University [NET-06-0508]
  3. Foundation of the Jiangsu Education Committee [09KJA150001, 09KJB150006]

向作者/读者索取更多资源

This work develops a novel electrochemical approach for detection of the extracellular oxygen released from human erythrocytes. The sensing is based on the bioelectrocatalytic system of graphene integrated with laccase (Lac) and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) toward the reduction of oxygen. ABTS and laccase are assembled on the surface of graphene, which is synthesized by a chemistry route, utilizing the pi-pi and electrostatic interactions of these components. Transmission electron microscopy (TEM), atomic force microscopy (AFM), and FT-IR spectroscopy demonstrate that graphene has been successfully synthesized, and ABTS and laccase have been effectively assembled on a graphene surface with the formation of Lac-ABTS-graphene hybrid. The voltammetric results indicate that ABTS can be used as a redox mediator when it is in immobilized form. The hybrid deposited on the glassy carbon (GC) electrode is demonstrated to be a good bioelectrocatalyst for the reduction of oxygen with inherent enzyme activity, accepted stability, high half-wave potential (ca.670 mV vs NHE), and unimpeded electrical communication to the copper redox sites of laccase. Therefore, this study has not only established a novel approach of detection of extracellular oxygen but also provided a general route for fabricating a graphene-based biosensing platform via assembling enzymes/proteins on a graphene surface.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据