4.4 Article

Malleable skin coloration in cephalopods: selective reflectance, transmission and absorbance of light by chromatophores and iridophores

期刊

CELL AND TISSUE RESEARCH
卷 329, 期 1, 页码 179-186

出版社

SPRINGER
DOI: 10.1007/s00441-007-0384-8

关键词

color change; spectral reflectance; polarization; body pattern; squid, Loligo pealeii (Mollusca Cephalopoda)

向作者/读者索取更多资源

Nature's best-known example of colorful, changeable, and diverse skin patterning is found in cephalopods. Color and pattern changes in squid skin are mediated by the action of thousands of pigmented chromatophore organs in combination with subjacent light-reflecting iridophore cells. Chromatophores (brown, red, yellow pigment) are innervated directly by the brain and can quickly expand and retract over underlying iridophore cells (red, orange, yellow, green, blue iridescence). Here, we present the first spectral account of the colors that are produced by the interaction between chromatophores and iridophores in squid (Loligo pealeii). Using a spectrometer, we have acquired highly focused reflectance measurements of chromatophores, iridophores, and the quality and quantity of light reflected when both interact. Results indicate that the light reflected from iridophores can be filtered by the chromatophores, enhancing their appearance. We have also measured polarization aspects of iridophores and chromatophores and show that, whereas structurally reflecting iridophores polarize light at certain angles, pigmentary chromatophores do not. We have further measured the reflectance change that iridophores undergo during physiological activity, from off to various degrees of on, revealing specifically the way that colors shift from the longer end (infra-red and red) to the shorter (blue) end of the spectrum. By demonstrating that three color classes of pigments, combined with a single type of reflective cell, produce colors that envelop the whole of the visible spectrum, this study provides an insight into the optical mechanisms employed by the elaborate skin of cephalopods to give the extreme diversity that enables their dynamic camouflage and signaling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据