4.8 Article

Challenges of Determining O-Glycopeptide Heterogeneity: A Fungal Glucanase Model System

期刊

ANALYTICAL CHEMISTRY
卷 82, 期 9, 页码 3500-3509

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac901717n

关键词

-

资金

  1. Danish Ministry of Science, Technology and Innovation
  2. Danish Agency for Science, Technology and Innovation [272-07-0066]
  3. Austrian Science Fund [J2661]
  4. Macquarie University
  5. Austrian Science Fund (FWF) [J2661] Funding Source: Austrian Science Fund (FWF)

向作者/读者索取更多资源

O-Linked glycosylation often occurs in mucin-type domains that are heavily and heterogeneously glycosylated and are challenging to analyze. The analysis of these domains is often overlooked because of these difficulties, but changes in mucinlike domain glycosylation are implicated in many diseases. Here we have explored several strategies to determine the heterogeneity of mucinlike O-glycosylated domains. Four glucanases secreted in large quantities from Trichoderma reesei, all containing heavily O-glycosylated mucinlike linker regions, were used as a model system. The strategies involved monosaccharide compositional analysis and identification of the released glycans by HPAEC-PAD and carbon-LC ESI-MS/MS. Glycosylated peptides were generated by different protease digestions (trypsin, papain, Asp-N, PreTAQ) and enriched by HILIC microcolumns, to determine the glycopeptide heterogeneity and glycosylation sites. The complex O-glycan heterogeneity on the intact glycoproteins and the enriched mucin-type domains was determined by MALDI-MS and ESI-MS, but the dense O-glycosylation in the mucin-type domains conferred high resistance to protease cleavage. ETD-MS/MS of the glycopeptide-enriched protease digests was unsuccessful for the de novo assignment of O-glycosylation at individual sites within the mucin-type domains but allowed several previously unknown O-linked sites outside the defined linker region to be found on two of the four glucanases. The protease digests produced many glycopeptides as determined by CID-MS/MS, but ETD fragmentation of these resulted in only a few interpretable spectra, suggesting that the use of ETD for determining the heterogeneous O-glycosylation at specific sites in regions of multiple occupancy is still in its infancy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据