4.8 Article

Double Covalent Coupling Method for the Fabrication of Highly Sensitive and Reusable Electrogenerated Chemiluminescence Sensors

期刊

ANALYTICAL CHEMISTRY
卷 82, 期 12, 页码 5046-5052

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac9029289

关键词

-

资金

  1. National Science Foundation of China [20975065, NSF 0955878]
  2. Shaanxi Normal University [2009CXS012]
  3. Division Of Chemistry
  4. Direct For Mathematical & Physical Scien [0955878] Funding Source: National Science Foundation

向作者/读者索取更多资源

A double covalent coupling method for the fabrication of a highly sensitive and reusable electrogenerated chemiluminescence (ECL) chemical sensor for the detection of tertiary amines and ECL aptamer-based (ECL-AB) biosensor for the detection of cocaine is reported. The ECL sensors were constructed by covalent coupling of amino-containing Ru(bpy)(3)(2+) derivatives (Ru1, Ru(bpy)(3)(2+) = tris(2,2'-bipyridyl)ruthenium(II)) or cocaine aptamer-Ru1 to the surface of a paraffin-impregnated graphite electrode that had been covalently modified with a monolayer of 4-aminobenzene sulfonic acid via electrochemical oxidations. ECL performance of the newly developed chemical sensors was evaluated using tri-n-propylamine (TPrA) and metoclopramide (MCP) as model analytes. The sensors exhibited excellent sensitivity, stability, and reproducibility with a detection limit of 30 nM for TPrA and 2.0 nM for MCP, and relative standard deviations (RSDs) of 2.1% over 90 cyclic potential cycles (0 to 1.50 V vs Ag/AgCl) and 2.6% over 45 cycles (0.60 to +1.30 V vs Ag/AgCl) at 400 mV/s for 50 nM TPrA and 200 nM MCP, respectively. For the ECL-AB biosensor, it showed an extremely low detection limit of 10 pM for cocaine, and offered a good selectivity toward cocaine, heroin, and caffeine. This detection limit was about 4-6 orders of magnitude lower than that reported on the basis of alternating current (AC) voltammetry and optical aptamer-based cocaine biosensors. Additionally, the ECL-AB biosensor was highly reusable (RSD = 2.8%, n = 7) and possessed long-term storage stability (96.8% initial ECL recovery over 21 days storage). A binding constant of 4.6 +/- 0.3 x 10(9) M-1 between cocaine and its aptamer was estimated using an ECL based Langmuir isotherm approach. Wide ranging applications of the presently reported strategy in fabricating various chemical sensors or biosensors are expected.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据