4.5 Article

Alterations in autonomic function and cerebral hemodynamics to orthostatic challenge following a mountain marathon

期刊

JOURNAL OF APPLIED PHYSIOLOGY
卷 103, 期 1, 页码 88-96

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/japplphysiol.01396.2006

关键词

cerebral blood flow velocity; hypotension

向作者/读者索取更多资源

We examined potential mechanisms (autonomic function, hypotension, and cerebral hypoperfusion) responsible for orthostatic intolerance following prolonged exercise. Autonomic function and cerebral hemodynamics were monitored in seven athletes pre-, post- (< 4 h), and 48 It following a mountain marathon [42.2 km; cumulative gain similar to 1,000 m; similar to 15 degrees C; completion time, 261 +/- 27 (SD) min]. In each condition, middle cerebral artery blood velocity (MCAv), blood pressure (BP), heart rate (HR), and cardiac output (Modelflow) were measured continuously before and during a 6-min stand. Measurements of HR and BP variability and time-domain analysis were used as an index of sympathovagal balance and baroreflex sensitivity (BRS). Cerebral autoregulation was assessed using transfer-function gain and phase shift in BP and MCAv. Hypotension was evident following the marathon during supine rest and on standing despite increased sympathetic and reduced parasympathetic control, and elevations in HR and cardiac output. On standing, following the marathon, there was less elevation in normalized low-frequency HR variability (P < 0.05), indicating attenuated sympathetic activation. MCAv was maintained while supine but reduced during orthostasis postmarathon [-10.4 +/- 9.8 % pre vs. -15.4 +/- 9.9% postmarathon (%change from supine); P < 0.05]; such reductions were related to an attenuation in BRS (r = 0.81; P < 0.05). Cerebral autoregulation was unchanged following the marathon. These findings indicate that following prolonged exercise, hypotension and postural reductions in autonomic function or baroreflex control, or both, rather than a compromise in cerebral autoregulation, may place the brain at risk of hypoperfusion. Such changes may be critical factors in collapse following prolonged exercise.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据