4.8 Article

Functional Fluorinated Modifications on a Polyelectrolyte Coated Polydimethylsiloxane Substrate for Fabricating Antibody Microarrays

期刊

ANALYTICAL CHEMISTRY
卷 82, 期 18, 页码 7804-7813

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac101799f

关键词

-

资金

  1. National Science Council in Taiwan

向作者/读者索取更多资源

Fluorinated compounds exhibit hydrophobic, nonstick, and self-cleaning properties, making them attractive for use as the coating material for biochips. In this study, we copolymerized the fluorinated compound 1H, 1H, 2H-perfluoro-1-decene (FD) with acrylic acid (AA) and bonded the resulting copolymer with protein G on the surface of polyelectrolyte coated polydimethylsiloxane (PDMS) to form a functional surface that captures antibodies. We demonstrated that the modified PDMS surface remained hydrophobic while becoming resistant to nonspecific protein binding. Thus, aqueous sample solutions formed the droplets (4 mu L) on the surface without spreading and drying during the sample printing. Contact angle measurements showed that this functionalized surface was as hydrophobic as the native PDMS with a virtually constant contact angle over seven days of the study under dried condition at 4 degrees C. Spectroscopic measurements revealed that FD/AA copolymerization formed a homogeneous and highly dense multilayer (50 mg/mm(2)) with a fluorine coverage of 35.4%. Moreover, protein G was shown to covalently bind to AA molecules on the surface at a binding density of 0.24 mu g/mm(2). We demonstrated that the fluorinated coating withstood nonspecific binding with extremely low background emission, leading to bioassays that, without the need of blocking agents, exhibited six times more sensitivity than PEG coatings. The fluorinated PDMS antibody microarrays were further applied to accurately determine the absolute concentration of ER alpha in MCF-7 cells. In conclusion, the unique properties of fluorinated compounds, such as withstanding wetting, nonspecific binding and contamination, make them an excellent coating material for use in sensitive and simple on-chip assays.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据