4.8 Article

Highly Efficient Enzyme Reactors Containing Trypsin and Endoproteinase LysC Immobilized on Porous Polymer Monolith Coupled to MS Suitable for Analysis of Antibodies

期刊

ANALYTICAL CHEMISTRY
卷 81, 期 5, 页码 2004-2012

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac8026564

关键词

-

资金

  1. Director, Office of Science
  2. Office of Basic Energy Sciences
  3. Materials Sciences and Engineering Division of the U.S. Department of Energy [DE-AC02-05CH11231]

向作者/读者索取更多资源

Capillary enzymatic microreactors containing trypsin and endoproteinase LysC immobilized on a porous polymer monolith have been prepared and used for the characterization and identification of proteins such as cytochrome c, bovine serum albumin, and high-molecular weight human immunoglobulin G. The hydrophilicity of diol functionalities originating from the hydrolyzed poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolith was not sufficient to avoid adsorption of hydrophobic albumin in a highly aqueous mobile phase. Therefore, this monolith was first hydrophilized via photografting of poly(ethylene glycol) methacrylate followed by photografting of a 4-vinyl-2,2-dimethylazlactone to provide the pore surface with reactive functionalities required for immobilization. This new approach reduced the undesired nonspecific adsorption of proteins and peptides and facilitated control of both the enzyme immobilization and protein digestion processes. The enzymatic reactors were coupled off-line with MALDI/TOF MS and/or on-line with ESI/TOF MS. Experimental conditions for digestion were optimized using cytochrome c and bovine serum albumin as model proteins. The optimized reactors were then integrated into a multidimensional system comprised of a monolithic capillary enzyme reactor, an in-line nanoLC separation of peptides using a poly(lauryl methacrylate-co-ethylene dimethacrylate) monolithic column, and ESI/ TOF MS. With the use of this system, immunoglobulin G was digested at room temperature in 6 min to an extent similar to that achieved with soluble enzyme at 37 degrees C after 24 h.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据