4.8 Article

Improvement of Inner Filter Effect Correction Based on Determination of Effective Geometric Parameters Using a Conventional Fluorimeter

期刊

ANALYTICAL CHEMISTRY
卷 81, 期 1, 页码 420-426

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac801676j

关键词

-

向作者/读者索取更多资源

The most widely used correction of fluorescence intensities for inner filter effects in conventional (90 degrees) fluorimeters fails at high absorbance values. We have critically examined this failure, which is caused by the difference between the geometrical parameters (GPs) of the excitation and emission beams in the typical instrument (focused beams) and in the theoretical picture on which the correction is based (collimated beams). We provide two types of experimental measurement of GPs and show that their substitution in the correction equations leads to significant improvements in the linear range of corrected fluorescence. We also demonstrate that mathematical optimizations give greater improvements and that the optimizations yield GPs consistent with experimental measurements. For solutions exhibiting primary inner filter effect only, we have extended the range of linearity of corrected fluorescence to a(ex) (absorbance per cm) up to 5.3; for systems with both primary and secondary inner filter effects we have achieved linearity for a(ex) + a(em) = 6.7. In all cases linear fits have slopes which agree well with the dilute limit. Different series of one- and two-solute solutions were used to demonstrate effectiveness of our correction methods. We also provide a rationale for the unexpected independence of GPs on excitation and emission bandwidths.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据